The 2010 IEEE International Conference on Robotics and Automation

Scene Understanding in a Large Dynamic Environment through a Laser-based Sensing

H. Zhao, Yiming Liu, X. Zhu, Y. Zhao, H. Zha

Peking University

Outline

- Introduction
- Problem formulation
- Framework
- Experimental results
- Summary
- Future work

Introduction – Data Acquisition

 We use a moving platform with SLAM to acquire the range data of the whole environment

GPS IMU			
Video Camera	Laser #	Scan Mode	Major Purpose
	L1	Horizontal	SLAM with MODT
	L2	Downward	Road geometry
	L3	Upward	Objects above the road
	L4	Vertical Right	Objects to the right of the car
Laser Scanner L3,L1,L2	L5	Vertical Left	Objects to the left of the car

Our Platform

Introduction – Data Acquisition

Introduction – Data Acquisition

Equally convertible to each other Same data organized in two different forms

Problem Formulation

People can easily understand the scene

3D Laser Points

2D Range Image

Introduction - Our Objective

 We aim to provide a map with high-level representations.

This map enables a robot to have semantic knowledge of the environment which is large and dynamic, such as objects, their types and so on.

Make the robot understand the scene!

Problem Formulation

Input - Range Image

• Output - Segments with semantics

Segmentation

and

Classification

Traditional Method

Sequential framework

segmentation -> classification

Ochallenges

- Many kinds of objects in complex environments
- Based on an uniformed segmentation rule to all kinds of objects
 - Different objects might be segmented into one
 - One object might be segmented into different pieces

 Classification and segmentation should not be separated

Framework - Flowchart

Plane extraction

First, we separate every scanline into straight line segments.

Plane extraction

Then, we grow all these straight line segments into planar regions.

Plane Extraction Results

Contour Detection

Red Point: contour point

Over-segmentation Results

Joint Merge with Classification

 $P(s_{i+j} | I) \propto \sum_{l \in L} P(y_i = l | I) \cdot P(y_j = l | I) \cdot P(s_{i+j} | y_{i+j} = l, I)$

The probability for a segment to be a certain class Segment Classification

Given object class, the likelihood of two segments be the measurement to a single object Likelihood

Segments Classification

$$\sum_{l \in L} \frac{P(y_i = l | I) \cdot P(y_j = l | I)}{P(y_i = l | I) = \frac{1}{Z}} P(\bigcup_k y_i^{(k)} = l | I) \bullet \prod P(y_i^{(k)} = l | I)}$$
Points Cloud Classification
Line Segment Classification

Joint Merge with Classification

Segments Classification

Out Cloud Classification

• SVM

Line Segment Classification

Naive Bayesian Classification

Training Sample

 We only use a small number of samples to train the point cloud classifier.

Class	Line Segments	Point Clouds
Building	9394	96
Road	10714	23
Tree	4122	148
Car	6080	41
People	394	120
Bush	1176	39
Bus	253	1
Total	32133	468

Feature Selection

 SVM - We selected 7 most discriminative features among more than 30 features

Feature Selection

Naive Bayesian Classification - We selected 6 features

Likelihood

7 classes, 7 models

- Plane fitting for road and building
- Cube fitting for car, bus and bush
- Cylinder fitting for people
- Line fitting for tree

Final Segmentation

Summary

 We develop a framework of joint segmentation and classification.

• The experimental results are encouraging.

• But there are still problems to be solved

- Implementation of the framework needs to be improved.
- Classification accuracy, especially people, are not satisfying due to limited training samples and partial observation.

Future work

Improve our framework

- How to deal with the segments containing no line segment
- Points should be a special form of lines
- Make more training samples
 - We can make it together
 - Our data are available in

http://poss.pku.edu.cn

Thank you!